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ABSTRACT 

Twitter has become a political reality where political parties, presidential candidates, 

legislatures and journalists post tweets about the latest events sharing texts, pictures, 

hashtags, URLs, and mentioning other users. Gaining insight from the vast amount of 

political data on Twitter is only possible with proper computational tools.  

We propose to store and manage Twitter data in an optimized Neo4j graph database 

for serving queries about political communication among state legislators of 50 U.S. states, 

state reporters, and presidential candidates for the 2016 presidential election. Our rationale 

for selecting this relatively new database technology is threefold: (1) ease of use in explicitly 

modeling and visualizing communication relationships among entities of interest; (2) 

flexibility to evolve the database overtime to quickly adapt to changes in user requirements; 

and (3) user-friendly intuitive query interface. We developed a Python-based Google App 

Engine application using Twitter API to collect tweets from the Twitter’s handlers of the 

aforementioned political actors. We employed best practice guidelines in graph database 

design to develop five different database models in order to distinguish the impact of each 

query optimization technique. We evaluated each of the models on the same set of tweets 

posted during January 1, 2016 to November 11, 2016 using the same set of queries of interest 

to political communication scholars in terms of the average query response times. Our 

experimental results confirmed the benefits of the best practice design guidelines. In addition, 

they show that the optimized database model is able to provide significant improvement in 

query response times. Reducing the number of hops used in the graph queries and using 

database indexes on most commonly used attributes reduced the average query response time 

in our dataset by as much as 74.52% and by 85.27%, respectively, compared to the reference 

model. Nevertheless, the reduction in the average query response time comes with the cost 

of the increase in graph database relationship store size by 5.49% compared to the reference 

model.  

 Our contributions are as follows. (1) The optimized Neo4j graph database that will 

be updated weekly with new tweets; the access to this database can be made available to 

political communication scholars. (2) The above findings added to currently limited  
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guidelines in graph database designs. (3) The findings about political communication prior 

to the Iowa caucus of the 2016 primary presidential election. 
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CHAPTER 1. INTRODUCTION 

Due to ever expanding data on the web at a very fast rate and the rise of online 

journalism [1, 2], there is a need for effective and efficient ways of processing abundant data 

and presenting relevant and important information [3]. Twitter, a popular micro-blogging 

platform [4], is a vast source of data including political data that have gained tremendous 

interests among social science research studies [5, 6, 7]. Jungherr surveyed 115 articles about 

the use of Twitter in politics [7]. The survey mentions the usage of Twitter by politicians, by 

constituents during elections, and by campaign strategists to facilitate campaign events. 

Twitter has become an important tool for data journalists for political news [8-12]. 

To the best of our knowledge, the communications on Twitter among this group of 

political actors, namely, state legislators, state reporters, and presidential candidates have not 

been studied because of lack of proper computational tools. Some interesting questions are 

as follows. In a given time period, who are influential among state legislators or reporters? 

What hashtags or URLs are popular among this group and whether they imply or carry any 

agendas? Do state reporters’ tweets carry the same message as those in state legislators’ 

tweets? Is there a group of state legislators who frequently mention each other or retweet 

each other’s tweets? Are they in the same state or across states? Is there a similar interaction 

among a group of state reporters?  

This thesis focuses on designing an optimized database for serving the first set of 

queries about political communication on Twitter within the above group of political actors. 

We propose to use a Neo4j graph database management system to manage the database due 

to the following reasons. (1) At the time of this writing, Neo4j is the most widely used graph 

database management system (GDBMS) [13]. It has good documentation and is able to 

integrate with several third-party programs such as Tableau [14], a popularly used 

visualization tool by data journalists. (2) Neo4j supports a simple property graph model that 

explicitly models relationships as edges among entities (modeled as nodes) of interest; 

therefore, we can model communication relationships among political actors explicitly. (3) 

Neo4j query language is called Cypher which is declarative yet powerful to let users 

formulate their text queries into Cypher queries relatively easy. (4) GDBMS does not have a 

schema; hence, it can evolve quickly in order to adapt to rapid changes in user requirements 

[15, 16]. (5) Neo4j, in particular, has a user-friendly query interface that supports 
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visualization of query results in a graphical format. Last, in terms of query response time, 

Neo4j was shown to offer better query performance compared to other GDBMS such as DEX 

[17], NativeSail [18] and HypergraphDB [19].  

GDBMS is relatively new database management technology. Compared to an 

established database management systems such as relational database management systems 

(RDBMS) [20] or other No-SQL database management systems [21], GDBMS is more 

intuitive for modeling, querying, and visualizing complex relationship data [22, 23]. Nodes 

and edges are the key elements of any graph data model. There are several graph data models 

such as a simple property graph model [24], a Resource Description Framework graph model 

[25], and a hypergraph model [26]. In a simple property graph model, a single node 

represents one real-world entity of interest, e.g. a person, a category, a place or a thing. An 

edge represents an individual relationship between two nodes in the graph. Properties of 

entities or relationships are modeled as properties of individual nodes or individual edges, 

respectively. Nodes can be grouped into the same group and assigned the same label name. 

A similar grouping of edges is also done. GDBMS supports Create, Read, Update and Delete 

(CRUD) operations [27, 28] of nodes and edges. The network of nodes and connected edges 

is what we term the structure of the graph in this thesis. The graph structure can significantly 

influence query response times for the same returned results as shown in previous studies of 

graph databases about movies [29] and about tweets and Twitter users [30, 31]. Indexing 

frameworks together with rule and cost based optimizations for graph queries have been 

developed [32-35].  

 

1.1 Contributions 

In this thesis work, we designed a set of queries about political communication on 

Twitter among presidential candidates, state reporters, house representatives, senates and 

senators. We developed a Python-based Google App Engine application using Twitter API 

to collect tweets from the Twitter’s handlers of the aforementioned political actors. We 

collected 167,671 tweets during January 1, 2016 to November 11, 2016. We designed five 

different graph data models and determined the most efficient data model for our set of 

queries written in Neo4j’s query language called Cypher [36]. Our experimental results show 

that the key to achieve low query response time is (1) to use fewer numbers of hops between 
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nodes in the queries and (2) to query using schema indexing on attributes that are most 

frequently used in the query conditions. The largest improvements were of 74.52% and 

85.27% in average query response time compared to those of the reference model due to 

these two key features, respectively. 

Our contributions are the following. (1) The optimized Neo4j graph database that will 

be updated weekly with new tweets; the access to this database can be made available to 

political communication scholars who would use the pre-defined Cypher queries to obtain 

the information or use Tableau to visualize the query results from our database. (2) The 

findings on graph query optimization to be added to the currently limited guidelines in graph 

database designs. (3) The findings about political communication prior to the Iowa caucus 

of the 2016 primary presidential election that the database queries reveal. 

 

1.2 Organization 

In Chapter 2, we discuss related work on graph databases with emphasis on 

techniques for improving performance of graph database queries. Chapter 3 presents the 

proposed graph data models. In Chapter 4, we present experimental results and findings on 

how to design an efficient graph data model, when we should create a new node for an entity, 

when to introduce new edges in our data model, and when and how to use indexing to 

maximize the performance of the Neo4j Cypher queries and other considerations to keep in 

mind while designing the Cypher queries in order for them to offer low query response time. 
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CHAPTER 2. RELATED WORK 

In this chapter, we present related work relevant to techniques for improving 

performance of graph database queries. In Section 2.1, we provide background on indexing 

features and internal query optimization in Neo4j [37]. In Section 2.2, the graph design 

guidelines given by Neo4j [38] were summarized. In Section 2.3, we describe query 

optimization techniques by adding additional edges and/or nodes to direct the search to only 

relevant nodes such as the “time-tree” approach [39] that was proposed to support time-based 

range queries to find events occurring in a given time period.  

 

2.1 Query Optimization and Indexing Mechanism in Neo4j 

 Indexing is an internal data structure of a database management system for narrowing 

down the search space for the data of interest. Neo4j provides two indexing mechanisms: 

label indexing and schema indexing [40]. Label indexing is automatically created when a 

label is created. However, schema indexes have to be manually created given a label name 

and one attribute name of the label to create an index on. For instance, a user can manually 

create an index on the “name” attribute of the “User” label. Unlike RDBMS, a composite 

search key of several attributes is not allowed. Schema indexing is automatically considered 

in the following cases. (1) When there exists an equality comparison of the indexed attribute 

and a value without any function performed on the attribute. (2) When the indexed attribute 

is used in the “in” clause. (3) When the use of the index is explicitly specified in the query. 

The schema indexing is not considered when the indexed attribute appears in the inexact 

matching condition or when a function is applied on the indexed attribute even in equality 

condition. 

 

 

 

Figure 2.1 Cypher query execution process 
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Neo4j executes a Cypher query in a sequence of steps as shown in Figure 2.1. It first 

parses the input query and tokenizes it to build the corresponding abstract syntax tree (AST 

in Figure 2.1). It does basic syntax error checking of the query. If the query has no syntax 

error, Neo4j continues with semantic analysis. Neo4j’s documentation does not provide 

concrete details about how semantic analysis is done. We speculate that this process is similar 

to a typical semantic analysis process in RDBMS, which includes checking for undefined 

attributes, for incompatible operand types with the operation in the query, and for incorrect 

semantic of the query graph such as missing the join condition [41]. Next, Neo4j normalizes 

and optimizes the abstract syntax tree. Then, it rewrites the query such that all the labels and 

types are moved from the match clause in the query to the where clause and converts all 

equality statements (e.g., hashtag=“GOPDebate”) into an “In” statement (e.g., hashtag in 

[“GopDebate”]). One or more logical query plans are then created, depending on which 

query planner is used. A query plan/tree is a tree of operators such as NodeByLabelScan, 

NodeUniqueIndexSeek, CartesianProduct, ShortestPath, and Limit. Each operator takes no 

more than two operands (inputs). Once the final logical plan is selected, the algorithm for 

each logical operator in the final logical query plan is determined, which results in the 

physical query plan. 

The early version of Neo4j only supports a rule-based planner. Although it utilizes 

relevant indexes to produce query plans [42], no query cost is estimated and no statistics are 

used in the rule-based planner. Starting from version 2.2.0, Neo4j offers a cost-based planner 

in addition to the rule-based planner. Utilizing the same principles in RDBMS, Neo4j cost-

based planner estimates the cost of each logical query plan using statistics kept in the 

database such as label and index selectivity factors of the labels or indexes used in the query. 

Selectivity factor is the ratio of the number of output rows produced by an operator to the 

number of input rows coming in to the operator. The query tree with high selectivity (i.e., 

low selectivity factor) at the base of the query tree tends to give a faster query execution time 

because less results are available to subsequent operators in the tree to process. Several 

logical query plans are considered by Neo4j cost-based planner. The cheapest plan is then 

selected for execution by a greedy algorithm in Neo4j version 2.2 or a dynamic programming 

algorithm in Neo4j version 2.3. Because the cost-based planner offers much better 

performance than the rule based planner, all read-only Cypher queries use the cost-based 
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planner by default. To force the use of the rule-based planner, either set the 

dbms.Cypher.planner option to RULE in the configuration file, which forces the rule-

based planner on all Cypher queries submitted to this Neo4j server, or prepend CYPHER 

planner = rule before the Cypher query, which forces the use of the rule-based planner only 

this query. 

 

2.2 Guidelines for Graph Data Model Design 

Since GDBMS is relatively new technology, there are very few principles available 

for designing graph databases. Neo4j’s developers provide some guidelines for graph 

database model design [43]. Real-world entities are typically modeled as nodes and nodes 

with similar properties are grouped into a label. Simple properties (single-value properties) 

should be kept as node properties. A composite property consisting of multiple components, 

for instance, an address consisting of the first line, the second line, city, state, and zip code, 

should be broken down into multiple nodes, one for each component of the property. These 

nodes are linked via labeled edges with the main node.  

Two-way relationships among entities are modeled as edges. Quality of relationships 

is modeled as the property of the edge. If the relationship involves more than two entities, an 

intermediate node is used to link all the node entities. The data model should attempt to 

reduce redundant data in the database to reduce the search space. Nodes can be linked in a 

linear fashion to indicate the order they occur in time. Nodes can be linked in a tree fashion 

termed multi-level indexing structure where the root node has its children nodes representing 

individual years; each year node has its children nodes representing individual months; each 

month node has its children nodes representing individual days; the children nodes are linked 

together in chronological order. Each day node has its children representing individual events 

on that day. This idea is similar to the time-tree idea mentioned in the next section. If we 

only keep the date of the events as the property in the event node and use it in the query to 

find events in a particular time period, Neo4j needs to search through all the event nodes to 

find the event nodes in the required time period. We can use the multi-level indexing 

structure to find the beginning node representing the start date and the end node representing 

the end date in the given time interval and only search through the nodes linked in between 

these two nodes. One may ask why not using schema indexing on the event date property 
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instead of creating the additional multi-level indexing structure, which further increases the 

size of the database. The reason is that Neo4j will not use schema indexing if a function is 

applied on an attribute value in which the index exists. A date consists of day, month, and 

year. If we want to look at a particular date, a function has to be applied to extract the date, 

which prohibits Neo4j from using the indexing on this property. 

 

2.3 Query Optimization via Graph Structure Change 

We describe the application of the time-tree approach using our dataset. To model 

each tweet and its various properties such as time when it was posted and the tweet text, we 

can use a node with the label “Tweet” to store properties of each tweet as node properties. 

We refer to the nodes having this label as Tweet nodes. One naïve approach for retrieving 

tweets posted within a given time range is to compare it with the corresponding property 

value of Tweet nodes, but it can be very time consuming since Neo4j has to check this 

property value against those of all the Tweet nodes in the database, depending on the number 

of tweet nodes in the database. Furthermore, showing tweets posted in a particular order by 

time requires further sorting of the results, which increases the query processing overhead. 

Therefore, multi-level tree data structures were introduced to support queries for data in a 

given time range [44]. Tweet nodes are attached to the leaves of the time tree. To show tweets 

posted within a specified time period is to traverse through relevant branches in the time tree 

structure. In Figure 2.2, the time tree has a root node labelled as a “Century” node, followed 

by nodes representing individual years on the first level, nodes representing individual 

months on the second level, nodes representing individual days on the third level, and so on 

[45]. The individual leaf nodes of the time tree has edges to tweet nodes posted at that time 

as illustrated in Figure 2.2. 
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Figure 2.2 Time tree example 

 

 

Figure 2.3 “Tweet” nodes attached to “Day” nodes linked via “:NEXT” edges 
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In order to get tweets posted in a given time period using the time tree, we rewrite 

the query to find the starting path node and ending path node and collect the tweets attached 

to the day nodes which are ordered and connected through the next relationship edge in 

Neo4j. See the rewritten query in Figure 2.4 for tweets with the hashtag “GOPDebate” in it 

during January 2016. 

Figure 2.4 Cypher query utilizing the time tree 

There are two approaches for creating the time tree. The first approach is to create 

the tree with nodes and labels representing the predefined number of years (e.g., Year nodes), 

months (e.g., Month nodes), and days (e.g., Day nodes), respectively. Then, attach each 

Tweet node to the Day node the tweet was posted. But the problem with this approach is that 

we should know in advance about the time range of the tweets to add to the database. The 

second approach is to create the time tree nodes dynamically while adding the tweets to the 

database [41]. The time tree can further be expanded to include the time information about 

the tweets posted.  

Cattuto et al. introduced a graph data model for representing and efficiently querying 

the time-varying social network data in Neo4j [31]. They collected data from participants 

wearing badges equipped with active Radio Frequency Identification devices during the 20th 

ACM Hypertext 2009 conference from June 29th to July 1st 2009. Their model allows rich 

queries involving combinations of a social network topology. Their proposed data model 

included a similar time-tree graph structure to support time-based range queries. The model 

was implemented in Neo4j and was shown to perform well.  

Goonetilleke et al. stored micro-blogging queries in most widely used graph 

databases: Neo4j and Sparksee [30]. The data model is simple, consisting of user nodes, 
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tweet nodes, and hashtag nodes with posts, mentions, follows, and retweets relationships 

among user nodes and tags between tweet nodes and hashtag nodes. No time-tree like 

structure was used to support range search queries in a given time period. The authors 

implemented their graph in Neo4j with nearly 50 million nodes and 326 million edges. They 

used Twitter as the data source having 284 million follows relationships among 24 million 

users. Their simple queries included select queries, adjacency queries to retrieve the 

immediate neighborhood of a node. For advanced queries, they used the count, order by, and 

limit clauses in Neo4j. Other queries included co-occurrence queries, recommendation and 

influence queries. In their work, they did not evaluate the performance of the graph database 

management systems.  

 

2.3 Other GDBMS Query Optimization, Indexing, and Benchmarking 

Dai et al. investigated the performance of rule-based query optimization by sharing the state 

and computation between multiple queries [32]. They have introduced new abstractions, 

physical operators, and rules. The experiment results were measured on both real world 

datasets and synthetic benchmark. However, their framework is limited to a specific set of 

queries. They have not tested their framework against a cost-based optimizer which is the 

default planner for the latest version of Neo4j as it performs much better than rule-based 

planners. Trißl proposed a cost-based optimization framework for graph queries where graph 

nodes and edges are stored in RDBMS [35]. In this work, two implementations of path 

operators were introduced. The performance of the proposed method was evaluated on 

synthetic data only. More work is needed for the framework to handle path length and path 

queries.  

Zhao and Han proposed a new pattern-based graph indexing framework using a 

decomposed shortest path algorithm for efficiently searching graph structures in large 

networks [33]. They implemented their framework for searching protein structures in a 

biological graph database. They evaluated the performance of their framework on both 

synthetic and real biological datasets. However, they still need to develop their framework 

for large graph networks that grow over time and also need to address the issue of noise and 

failure in the network before their indexing technique can be adopted. Williams et al. 

proposed a novel method of indexing the graph databases for subgraph isomorphism queries 
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and similarity queries [46]. They tested the performance of their method on protein motif 

datasets and on synthetic datasets as well. However, their technique is limited to small graphs 

(less than ~ 20 nodes).  

Benchmarking of GDBMS was also intensively studied as summarized in Tang’s 

thesis [47]. Ciglan et al. discussed various challenges of developing fair benchmarking 

methodologies of graph traversal operations [18]. They implemented their benchmarking 

suite for 5 graph databases: Neo4j, DEX, OrientDB, NativeSail and SGDB. They performed 

experiments with the datasets having nodes varying from 1,000 to 100,000 vertices. The 

larger datasets had vertices varying from 200, 400, 800 thousands and 1 million vertices. 

They developed their design to test the ability of GDBMS in different memory constrained 

environments performing breath first traversal and community detection. For the 

benchmarking dataset, they used LFR-Benchmark generator which was primarily designed 

for testing algorithms for community detection in a graph. They concluded that operations 

involving local traversals in a large network are more suitable for the tested systems than 

operations involving traversals of the whole graph structure. Dominguez-Sal et al. evaluated 

the performance of four graph databases: Neo4j, Jena, Hypergraph DB and DEX. Using their 

HPC Graph Analysis Benchmark, they tested the performance on different graph sizes. They 

showed that Neo4j and DEX are the most efficient ones. 

For the cloud environments, Dayarathna and Suzumura developed XGDBench 

benchmarking framework [48]. They used Multiplicative Attribute Graph  (MAG) model for 

realistic modeling of attributes of the graph databases and used the R-MAT algorithm to 

build the graphs for different sizes and edge densities. They evaluated the applicability of the 

MAG model and conducted performance evaluation. For small graphs, all GDBMS 

performed reasonably, but only Neo4j and DEX could load the largest datasets. DEX scales 

better traversing 15K traversing edges per second but Neo4j had a better throughput for some 

operations. DEX had best performance for most operations, and in operations in which Neo4j 

was the fastest, DEX performance was comparable to that of Neo4j.  
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CHAPTER 3 

PROPOSED GRAPH DATA MODELLING FOR POLITICAL COMMUNICATION 

ON TWITTER 

In this chapter, we present our proposed approach. We start with questions about 

political communication in Section 3.1. In Section 3.2, we present the process for collecting 

tweets from Twitter and the challenges we faced. In Section 3.3, we discuss our design of 

five different graph data models along with the rationale. We provide Cypher queries for 

each data model in the Appendix A. Appendix B provides description on how to run the data 

collection program. 

 

3.1 Questions of Interest to Political Communication 

Communication scholars are interested in studying communication on Twitter to 

produce some meaningful stories such as important political communication on Twitter 

between US state reporters and political leaders and the impact on political policy making. 

Under a consultation with a communication scholar, we design 26 queries of her interest as 

listed in Table 3.1. Hashtags are assumed to carry out common interests. Therefore, hashtags 

used in tweets, users’ mentions in tweets, and retweets among different parties are of 

particular interests. Each user has an associated category among presidential candidate, 

house representative, reporter, senator, senate, and house. Each user also has an associated 

political party to which she belongs. A screen name of a user is used to represent a user’s 

name as all the users must have their screen name but may leave their name empty. 
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Table 3.1 Queries of Interest to Communication Scholars 

Q1 Find top k most retweeted tweets by users in GOP and Democrat parties in a given 

month; show the retweet count, tweet text, user’s name, and user’s party in 

descending order of the retweet count. 

Example parameter values: k is 100 and the month is Jan. 2016 

Rationale: This query finds k most influential tweets in a given month and the 

user who posted them. 

Q2 In a given month, find top k users who used a given hashtag in a tweet with the 

most number of retweets; show user’s name, user’s party, tweet text, and retweet 

count in descending order of the retweet count. 

Example parameter values: k is 100; hashtag is GOPDebate and the month is 

Jan. 2016. 

Rationale: This query finds top k influential users who used a given hashtag that 

may represent a certain agenda. 

Q3 Find top k hashtags that appeared in the most number of states; show the number 

of states it appeared in, the list of the distinct states it appeared, and the hashtag 

in descending order of the number of distinct states the hashtag appeared. 

Example parameter values: k is 100 

Rationale: This query finds top k hashtags that are most widely spread across 

states, which could indicate a certain agenda that is widely discussed. 

Q4 Find distinct states along with the month and the date of a tweet posted by state 

legislature (senate, senators, house, and house representatives) or state reporters 

using a given hashtag in a given year.  

Example parameter values: hashtag is GOPDebate; the year is 2016. 

Rationale: This query aims to find the spread across states of a given hashtag 

among state legislatures and reporters that could represents a topic of interest 

along with the timeline of the discussion. 
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Table 3.1 (continued) 

Q5 Find tweets that have a given hashtag posted by users of a given state for a given 

month. Show tweet text and retweet count in descending order of the retweet 

count. 

Example parameter values: hashtag is GOPDebate; the state is New Jersey; the 

month is Jan. 2016.  

Rationale: This query finds most influential users in a given state for a particular 

topic of interest (hashtag). 

Q6 Find k users who used a given set of hashtags in their tweets. Show the user’s 

name and the US state to which the user belongs in the alphabetical order of the 

names. 

Example parameter values: hashtags are GOPDebate, DemDebate, GOP; k is 

100. 

Rationale: This query finds k users who share similar interests (based on 

hashtags). 

Q7 Find users who used a given hashtag in a given state in a given month; show the 

count of tweets posted with that hashtag along with the user’s name and category 

in descending order of the tweet counts. 

Example parameter values: hashtag is GOPDebate and the state is New Jersey; 

month is Jan. 2016. 

Rationale: This query finds users who used a given hashtag most often in a given 

state. These users could influence an agenda within the state. 

Q8 Find k tweets posted by a given user for a given hashtag in a given state for a given 

month. Show the tweet text and the user’s name. 

Example parameter values: k is 1000; the user’s name is SusanKLivo; the 

hashtag is GOPDebate; the state is New Jersey; the month is Jan. 2016. 

Rationale: This query is to be used after Q7 to find out more about the content of 

the tweets with the hashtag of interest. 
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Table 3.1 (continued) 

Q9 Find top k most followed users; show the user’s name, the user’s party, and the 

number of followers in descending order of the number of followers. 

Example parameter values: category values are GOP or democrat. 

Rationale: This query finds the most influential user measured by the number of 

followers; this query can be extended to find the influential user of a certain 

category or a certain party. 

Q10 Find the list of distinct hashtags that appeared in one of the states in a given list in 

a given month; show the list of the hashtags and the state in which they appeared. 

Example parameter values: state list includes Ohio, Alaska, Alabama; the month 

is Jan. 2016. 

Rationale: This query is to find common interest among the user in the states of 

interest. 

Q11 Find tweets with hashtags posted by republican (GOP) or democrat members of a 

given state in a given month; show the tweet text, the hashtag, the user’s name of 

the user who posted the tweet, and the user’s party. 

Example parameter values: state is Ohio; the month is Jan. 2016 

Rationale: This query allows exploration of the context in which the hashtags 

were used. 

Q12 Show hashtags, tweets, user, state nodes for a given state for a given month with 

the maximum limit of k results 

Example parameter values: state is Ohio; the month is Jan. 2016; k is 1000. 

Rationale: This query gives detailed activities in a given state. 

Q13 Show at most k nodes representing tweets that has a given hashtag used in a given 

month. 

Example parameter values: hashtag is GOPDebate; the month is Jan. 2016; k is 

100. 
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Table 3.1 (continued) 

Q14 Find at most k users who used a given hashtag in their tweet in a given month; 

show user’s name, user’s party, and the name of the state the user belong in 

increasing order of the tweet posted date. 

Example parameter values: hashtag is GOPDebate; the month is Jan. 2016; k is 

1000. 

Rationale: This query finds users who used the given hashtag in the given period 

of time.  

Q15 Show user’s name and user’s state along with the list of URLs used in tweets 

posted by these user for a given month in ascending order of the dates the tweets 

were posted. 

Example parameter values: user’s party is GOP for Mar. 2016 

Rationale: This query finds the URLs shared by user of a given party. 

Q16 Find top k tweets of users who belong to one of the parties in the given list of 

parties and in a given month. Show user’s name, user’s party, tweet text, retweet 

count, and the url used in the tweet in descending order of the retweet count 

Example parameter values: user’s party is GOP or democrat for the month of 

Jan. 2016; k=100. 

Rationale: This query finds the most influential tweets along with the user who 

posted them and the urls used by the user. 

Q17 Find k users of a given party in a given month. Show user’s name, user’s party, 

and the list of URLs used by the user in their tweets. 

Parameter values: user’s party is GOP for the month of Jan. 2016; k=100. 

Rationale: This query helps us to find the URLs shared by members of the same 

political party. 

Q18 Find k users who were mentioned in tweets of users of a given party; show tweet 

text, user’s name, user’s state, and name of the user mentioned in the tweet in 

ascending order of the days of the month. 

Parameter values:  user’s party is GOP for the month of Jan. 2016; k=1000; 

Rationale: This query finds interactions among users on Twitter. 
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Table 3.1 (continued) 

Q19 Find k users of a given party and users who they mentioned in their tweets in a 

given month. 

Parameter values: user’s party is GOP; the month is Jan. 2016; k=1000 

Rationale: This query finds interactions among users on Twitter. 

Q20 Find k hashtags used by users of a given state in a given month; Show hashtag 

nodes, day nodes, month node, and year node. 

Parameter values: state is New Jersey for the month of Jan. 2016; k=1000. 

Rationale: This query visualizes these hashtags and connections. 

Q21 Find top k hashtags among users of a given party in a given month; show the 

hashtags and count of the number of time the hashtag appeared in descending 

order of the count. 

Example parameter values: user’s party is GOP; the month is Jan. 2016; 

k=1000. 

Rationale: This query finds k most popular hashtags. 

Q22 Find top k hashtags among all the users; show the number of tweets (count) that 

each hashtag has been used and the list of distinct user’s states of these tweets, 

and the count of the distinct states, in descending order of the tweet count. 

Example parameter values: Month is Jan. 2016; k=1000 

Rationale: This query finds the spread of popular hashtags among state. 

Q23 Find top k hashtags posted by users in a given list of parties in a given list of 

months in a range of days. Show the hashtag and the count of the tweets the 

hashtag appeared in the descending order of the count 

Example parameter values: party list contains GOP and democrat; the month is 

Jan. 2016 and Feb. 2016 and the day range is 1-8. 

Rationale: This query finds popular hashtags during certain days (e.g., before 

Iowa caucus). 
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Table 3.1 (continued) 

Q24 Find top k hashtags posted by users in a given list of parties in a given month; 

show the hashtag, the count of tweets the hashtag appeared in. 

Example parameter values: user’s party list contains GOP and democrat; the 

month is Jan. 2016; k=1000. 

Rationale: This query finds the most popular hashtags posted by users in a given 

list of parties. 

Q25 Find k users mentioned in tweets by users in a given party list in a given month; 

show tweet text, user’s name and the name of the user mentioned in ascending 

order of the month and the day of the tweet. 

Example parameter values: user’s party list consists of GOP and democrat; the 

list of month is Jan. 2016 and Feb. 2016; k=10,000. 

Rationale: This query helps us to find the users mentioned. 

 

 

3.2 Data collection and storage techniques used 

For our data collection we focused on Twitter accounts of US state reporters, 

Presidential Candidates, House Representatives, Senate and Senators. Overall, we collected 

tweets posted by Twitter accounts.  

In order to collect tweets from Twitter, we developed an application using Python 

2.7.10 communicating with Neo4j 2.3.3 which is the most commonly deployed graph 

database worldwide. Py2neo 2.0.9 and Tweepy 2.2 python libraries were used in your 

application. Py2neo is a library to interact with Neo4j whereas Tweepy is a library for 

interacting with the Twitter Search API, which is a part of Twitter’s REST API. For 

collecting user timeline tweets we used GET statuses/user_timeline which returns a 

collection of the most recent Tweets posted by the user indicated by the screen_name or 

user_id parameters. Our program does not fetch duplicated tweets. For this we used cursoring 

technique [49] to paginate large result sets of user timeline tweets. With each Twitter search 

API request, we retrieved 200 tweets in one single page and for the next request we used the 

tweet id of the oldest fetched tweet in the previous page as a cursor to fetch the next set of 

tweets in reverse chronological order. 
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 For storing tweets, we used Google AppEngine 1.9.35 [50]. For each tweet fetched 

we stored tweet text, urls, hashtags used, user mentioned/replied in the tweet, tweet posted 

date, retweet status and count, user followers, following, screen name and the state user 

belongs to and tweet posted information. We observed that most of the tweets do not contain 

location information of the user. Due to this limitation, we had to manually update the state 

information of the user. Due to rate limit on Twitter search API which limits the number of 

requests that can be made in 15 minutes to 180 calls [51], we used 4 different user credentials. 

When we hit the rate limit, we can continue making requests using a different user credential. 

Our program is designed to be run automatically after a specified period of time (e.g., every 

3 hours) to fetch tweets and save them in the Appengine data store in the key-value pair 

format with unique Tweet ID as key and its various fields as properties with string data type.  

 

 

3.3 Graph Data Modeling 

Based on the information that we get from the user tweets and queries, we investigate 

four data models to find the one that gives the minimum average query response time for the 

queries described in Section 3.1.  Table 3.1 summarizes the intuition behind the design and 

describe each model in its own section. 

 

Table 3.2 Summary of the design choice to study query performance 

Data Model Design Intuition 

Data Model 1 We followed the basic guidelines for graph database design [43]. That is 

to use nodes to model entities like tweets, users, and states as well as nodes 

for representing multiple values in a tweet such as hashtags and urls. We 

model relationships between nodes using edges. This data model is used 

as our reference data model for our performance comparison. 

Data Model 2 We pulled out the atomic attributes from tweet nodes and user nodes to 

study the effect of increasing number of hops in our queries and the use of 

index on sub_category property since it is the most frequently used 

property in our queries. 
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Table 3.2 (continued) 

Data Model 3  The aim is to study the impact of reducing the number of hops in the query 

by introducing new edges between hashtag nodes and user nodes as well 

as hashtag nodes and state nodes into the reference data model. 

Data Model 4 This model is the hybrid model of model 2 and model 3, which has new 

node for the SubCategory with the index on it; we observed that forcing 

queries to scan by index reduces much query response time compared to 

the scan by label. Furthermore, this model has new edges between hashtag, 

state and user nodes to reduce the number of the hops in our Cypher 

queries for performance improvement. 

 

 

3.3.1 Data Model 1 

 

Figure 3.1 Data Model 1 
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This is the simplest model among the five models with the time tree on the right to 

speed up queries based on time. Figure 3.1 shows the schema. We follow the basic graph 

data model guidelines, making nodes for entities and edges to represent relationship between 

nodes. For properties like hashtags and urls where multiple of them can occur in a tweet, we 

separate them as nodes instead of properties. In the end, we have 5 types of node labels: 

Tweet, User, Url, Hashtag and State. Tweet nodes have properties: tweet id which is used to 

uniquely identify the tweet, retweet_count (number of retweets of this tweet), retweeted 

(whether this tweet has been retweeted by the user), tweet text, created_at (timestamp value 

of the tweet posted), day (integer values from 1 to 31), month (integer values from 1 to 12) 

and year (2016). Day, month and year values are extracted from the created_at field of the 

tweet. Tweet nodes have index on id property. User nodes have properties: user screen_name 

(user screen name on Twitter profile), followers (indicating the number of followers) and 

following (indicating the number of people this user follows), sub_category (GOP, democrat, 

na), category (house_representative, senator, presidential_candidate, senate, reporter) and 

name (user full name on Twitter profile). User nodes have indexing on screen_name 

property. State and Hashtag nodes have the name property used to indicate the state of the 

user and hashtag used by the user with indexing on these two properties. Url has the url 

property (expanded URLs used by the User in their Tweets) with indexing on it as shown in 

Figure 3.1. The sub_category indicates whether the user belongs to a party, ‘GOP’, 

‘democrat’ or ‘na’. The category property value is either senate (for Senate official handlers), 

presidential_candidate (for presidential candidates), reporter (for reporters), senator and 

house_representative, for senators and house representatives 

These nodes are connected with directed edges labeled as shown in Figure 3.1. We 

have timeline attached to tweet nodes in data model 1. We use timeline here to show results 

of Cypher queries that involve time range [39].  We have generated time tree dynamically 

for our study as we do not have the information about the range of years, months and days 

to support the tweets in the data model. 
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3.3.2 Data Model 2 

 

Figure 3.2 Data Model 2 

 

Figure 3.2 shows the schema of this model. In order to study how performance of the 

read-only Cypher query changes, we create new nodes for  retweet_count and retweeted 

properties of Tweet nodes with indexing on them to observe the effect of increasing the 



www.manaraa.com

 

 

23 

number of hops in Cypher queries. Similarly, we create new nodes for the user category and 

sub_category properties of the User node with indexing on them. We create an index on 

SubCategory nodes to observe the performance when we force queries to use scan by index 

instead of scan by label. Apart from this we have indexes on name property of Hashtag, State, 

id property of Tweet, url property of Url and screen_name property of User node. 

 

3.3.3 Data Model 3 

 

Figure 3.3 Data Model 3 

 

For our data model 3, we have modified data model 1 and introduced new edges 

between hashtag and state and user nodes as shown in Figure 3.3 to compare the performance 

of the data models when number of hops are reduced in our Cypher queries. In data model 

3, we have indexes on screen_name, id, url and name property of the User, Tweet, Url, 

Hashtag and State nodes respectively.  
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3.3.4 Data Model 4 

 

Figure 3.4 Data Model 4 

 

This model is the most efficient data model among the four models for most queries. 

We designed this data model after analysis of the performance of the first three data models. 

It has new SubCategory nodes with the index on the sub_category property and new edges 

between state, user and hashtag nodes as shown in Figure 3.4.  
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CHAPTER 4 

EXPERIMENTAL RESULT AND PERFORMANCE EVALUATION 

This chapter describes our data collection methods, performance metrics, evaluation 

results of the data models per our metrics, and query results and findings about political 

communication. 

 

4.1 Data Collection and Database Creation 

We developed two programs in Python 2.7 [52]. We used Neo4j 2.3.3 Community 

Edition for Windows [53]. Our first program running in Google App Engine environment 

collected tweets using Tweepy 2.3.0 and saved the data into Comma Separated Values (CSV) 

format. The second Python program used Py2neo 2.0.9 [54] library to insert the data from 

the CSV file into Neo4j to create the database for each data model. This way we can ensure 

that all the data models have the same set of data. Figure 4.1 illustrates this process. We ran 

our data collection program for 2 days to collect tweets posted since January 1, 2016  till 

November 11, 2016. The total number of tweets are 167,671 and they are divided into the 

following categories shown in Table 4.1. 

 

 

 

 

Figure 4.1 Process for importing tweets and related data 

 

Table 4.1. Collected data 

Category of Users Number of Twitter 

handlers 

Number of tweets collected 

Presidential candidates 10 14,721 

Senates 72 50,412 

Reporters 45 38,925 

Individual senators 88 15,084 

House representatives 198 48,529 
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Because the graph data models are different, the Cypher queries are also different. 

We developed five sets of Cypher queries, one for each data model. Table 4.2 presents the 

details about each data model. The number of nodes and edges are not necessarily the same 

because we added auxiliary edges and nodes as part of our optimization methods. The 

database sizes of the databases with the same number of nodes and edges could also be 

different due to whether there were additional schema indexes added to the databases or not. 

 

Table 4.2 Sizes of Data Models  

Model 

Model 1 

(Reference 

Model) Model 2 Model 3 Model 4 

Category MBytes MBytes % Change MBytes % Change MBytes 

% 

Change 

Array Store 8 8 0.00 8 0.00 8 0.00 

Logical Log 102.48 179.04 74.71 116.91 14.08 109.71 7.06 

Node Store 4.13 4.21 1.94 4.13 0.00 4.13 0.00 

Property Store 24.66 18.32 -25.71 24.66 0.00 24.66 0.00 

Relationship Store 29.88 40.79 36.51 31.51 5.46 31.52 5.49 

String Store Size 34.89 34.89 0.00 34.89 0.00 34.89 0.00 

Total Store Size 712.88 794.19 11.41 728.87 2.24 719.78 0.97 

               

Number of nodes 288298 294224 2.06 288298 0.00 288305 0.00 

Number of edges 661520 997688 50.82 709884 7.31 972136 46.95 

 

4.2 Performance Metric and Measurements 

The performance metric is the average query execution time for each query that is 

calculated as follows.  Each query was run 40 times consecutively on each data model and 

the average time for each query was calculated using the last 30 recordings; the first 10 query 

response times were not used in the calculation since the execution times were significantly 

differences due to cache warm up. In other words, the average performance measured should 

be the best case scenario for Neo4j as it may cache the query results. After we finished one 

data model, we moved on to measure performance of the next data model until all the data 

models were measured. All the queries were executed on the same workstation, an Intel 3.50 

GHz CPU with 32 GB RAM running Windows 7 Enterprise 64 bit operating system. We 
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used the default server and cache configuration of Neo4j 2.3.3 Community Edition for 

Windows in our experiments. 

 

4.3 Experimental Results 

We present the comparison of the query response time for all the 25 queries on all 

the four data models. Data model 1 is used as the reference model. We summarize the 

important findings in Section 4.3.1. 

 

Table 4.3.1 Average time taken by queries in seconds  

  
Model 1 

(Reference Model) Model 2 Model 3 Model 4 

Query 

ID (seconds) (seconds) (% Change) (seconds) (% Change) (seconds) (% Change) 

1 0.49497 0.43460 -12.196 0.49607 0.222 0.38997 -21.214 

2 0.01527 0.01493 -2.183 0.02053 34.498 0.02013 31.878 

3 0.58060 0.59287 2.113 0.14610 -74.836 0.14793 -74.521 

4 0.01540 0.00970 -37.013 0.02183 41.775 0.02000 29.870 

5 0.00570 0.00533 -6.433 0.00880 54.386 0.00727 27.485 

6 0.01460 0.01050 -28.082 0.00437 -70.091 0.00590 -59.589 

7 0.00770 0.00437 -43.290 0.00753 -2.164 0.00803 4.329 

8 0.00880 0.00810 -7.955 0.00647 -26.515 0.00933 6.061 

9 0.08937 0.01190 -86.684 0.08407 -5.931 0.01317 -85.267 

10 0.05160 0.04520 -12.403 0.04223 -18.152 0.04853 -5.943 

11 0.02900 0.03253 12.184 0.02567 -11.494 0.03137 8.161 

12 0.34230 0.32780 -4.236 0.31480 -8.034 0.32937 -3.778 

13 2.01973 2.24280 11.044 1.88413 -6.714 2.24417 11.112 

14 0.01887 0.01417 -24.912 0.01347 -28.622 0.01637 -13.251 

15 0.13313 0.13983 5.033 0.12470 -6.335 0.12190 -8.438 

16 0.43363 0.43657 0.676 0.42887 -1.099 0.33210 -23.415 

17 0.18100 0.13850 -23.481 0.16570 -8.453 0.14483 -19.982 

18 0.18670 0.24623 31.887 0.17530 -6.106 0.18427 -1.303 

19 0.17320 0.14023 -19.034 0.16870 -2.598 0.15037 -13.183 

20 0.06410 0.06793 5.980 0.06760 5.460 0.07260 13.261 

21 0.18810 0.16913 -10.083 0.18913 0.549 0.15163 -19.387 

22 0.32360 0.32250 -0.340 0.31247 -3.440 0.30583 -5.490 

23 0.41587 0.35467 -14.716 0.42150 1.355 0.33737 -18.876 

24 0.41110 0.33777 -17.838 0.39800 -3.187 0.31420 -23.571 

25 0.42770 0.44143 3.211 0.42583 -0.436 0.40570 -5.144 
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Figure 4.2.1 Comparison of average query response times of Q1-Q9 
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Figure 4.2.2 Comparison of average query response times of Q10-Q17 
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Figure 4.2.3 Comparison of average query response times of Q18-Q25 

 

4.4. Important Findings 

There is 21.21% improvement for the Q1 in model 4 from model 1 as query scan by 

index on the user sub-category property used in model 4 is much faster than query scan by 

label in model 1. For Q2, model 2 gives the best performance due to the use of RetweetCount 

as nodes is better than the use of the property retweet_count of Tweet nodes. 

For Q3 there is 74.52% improvement in model 4 from model 1 as we have introduced 

new edges between the hashtags and the state nodes so the number of hops gets reduced to 1 

hop in model 4 compared to 3 hops in model 1.   

For Q6 there is 59.59% improvement in model 4 compared to model 1 even though 

in both the models we have scan by index. This is because we have introduced new edges 

between user and hashtags used by the user, which resulted in 2 hops instead of 3 hops in 

model 1. For Q13, Cypher query is same for model 2, model 3 and model 4 but still model 3 

has least query execution time, it is likely due to the fact that model 3 has least number of 

edges.   



www.manaraa.com

 

 

31 

For Q9, Q19, Q21, Q23, Q24 and Q25, there is significant improvement of 85.27%, 

13.18%, 19.39%, 18.88%, 23.57% and 5.14%, respectively because of introduction of new 

nodes for user sub category and scan by index on those nodes.  

 Model 4 requires 0.00243%, 46.95%, and 5.49% more in terms of the number of 

nodes, the number of edges, and the relationship store size in MBytes, respectively compared 

to the reference model. 

Other findings: Queries designed with directed edges where ASCII arrows are used 

to describe the direction and using colon (:) prefix with named relationships enclosed by 

square brackets take less time to execute than queries with no directed edges and colon prefix 

used in the queries.  

 To summarize, while designing graph data models we created nodes for entities and 

label them and created edges between the nodes to define the relationships between the 

nodes. For non-atomic attributes of nodes, we created separate nodes e.g. hashtag nodes for 

hashtags used in the tweet. We found that it is good to pull out an atomic attribute and create 

a separate node in two scenarios. (1) When that attribute is used in the query condition (i.e., 

WHERE clause) in frequently used queries (e.g., sub-category of user nodes) or (2) When 

the attribute is frequently associated (used in WHERE clause or RETURN clause) with more 

than one type of nodes. For example, we created state nodes instead of using the location 

property in user nodes and introduced new edges to the state nodes (e.g., the edges between 

state and hashtag nodes) to reduce the number of hops in the queries needing this information. 

 

4.5 Limitations of the Experiment 

In our experiment, we have not considered the use of multiple match statements for 

queries having large number of hops, effect of adding indexing to the time tree like Lucene 

external index as well, comparison of time tree queries versus queries using the timestamp 

property attribute.  
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4.6 Findings about Political Communication 

We are interested to learn more about political communications among reporters, 

senators, house representatives, and reporters during January, 2016, one week before the 

Iowa Caucus for the 2016 presidential election primary. 

Under consultation with a communication scholar, queries Q3, Q11, Q15, and Q18 

yielded interesting findings. Q3 provides information about how a hashtag or news is 

diffused among different states. Q11 provides information about the similar messages being 

used by the parties. Q15 provides insight about the links being used among state reporters 

and Q18 helps to do a network analysis of the political actors.  
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

Twitter has emerged as a new medium for political communication and social media 

analysis. We collected 167,671 tweets from 10 presidential candidates, 72 senates, 45 

reporters, 88 individual senators, 198 house representatives of 50 states and designed 25 

queries and 4 different data models for studying political communication and social media 

analysis efficiently by evaluating the performance of the data models. From the findings of 

our experiment we have come up with the best data model having the least query execution 

time for the most of the queries designed.  From the experiment results we observed that 

there is 85.27% and 74.52% improvement in query execution time due to introduction of 

scan by index and introduction of new edges.  

 Our future work includes (a) studying the effect of multiple match statements for 

queries having a large number of hops and (b) effect of adding indexing to the time tree like 

Lucene external index.  
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APPENDIX A. CYPHER QUERIES 

Cypher Queries for model 1 

1: MATCH (u:User)-[:POSTED]->(t:Tweet) where t.retweet_count>0  and  u.sub_category in ['GOP', 'democrat'] and t.year=2016 

and t.month=1 and t.day>=1 and t.day<=31 return t.retweet_count AS retweet_count,t.text as tweet,u.screen_name as 

user_screenname,u.sub_category as user_party order by t.retweet_count  desc limit 100; 

2: MATCH (u:User)-[:POSTED]->(t:Tweet)<-[:TAGGED]-(h:Hashtag)  where h.name = 'GOPDebate' and u.sub_category in 

['GOP', 'democrat'] and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return distinct(u.screen_name) as 

user_screenname, u.sub_category as user_party, t.retweet_count as retweet_count, t.text as tweet order by retweet_count desc 

limit 100; 

3: MATCH (h:Hashtag)-[:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) return (count(distinct(c.name))) AS 

longest_path,collect(distinct(c.name)) as states, h.name AS hashtag order by longest_path desc limit 100; 

4: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)<-[:TAGGED]-(n:Hashtag) match (t:Tweet)<-[:HAS_TWEET]-

(d:Day)<-[:HAS_DAY]-(m:Month)<-[:HAS_MONTH]-(y:Year{year: 2016}) where n.name='GOPDebate'  RETURN 

distinct(c.name) as states,m.month as month,d.day as day", 

5: Match (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)<-[:TAGGED]-(h:Hashtag)  where t.year=2016 and t.month=1 and 

t.day>=1 and t.day<=31 and c.name = 'New Jersey' and h.name = 'GOPDebate'   return t.text AS tweet,t.retweet_count AS 

retweet_count order by t.retweet_count desc; 

6: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)<-[:TAGGED]-(h:Hashtag) where h.name in ['GOPDebate', 

'DemDebate', 'GOP'] return distinct(u.screen_name) AS user_screenname, c.name AS location order by user_screenname limit 

100; 

7: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)<-[:TAGGED]-(h:Hashtag) WHERE h.name = 'GOPDebate'  

and c.name='New Jersey' and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return count(t) AS count,u.screen_name as 

user_screenname, u.sub_category as user_party order by count desc; 

8: MATCH (c:State)<-[:FROM]-(u:User {name: 'SusanKLivio'})-[:POSTED]->(t:Tweet)<-[:TAGGED]-(h:Hashtag) WHERE 

h.name = 'GOPDebate'  and c.name='New Jersey' and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return t.text as 

tweet,u.screen_name as user_screenname  Limit 1000; 

9: MATCH (u:User)  where u.sub_category in ['GOP', 'democrat'] return u.screen_name as user_screenname, u.sub_category as 

user_party, u.followers as followers_count order by followers_count desc limit 1000; 

10: Match (y:Year)-[:HAS_MONTH]->(m:Month)-[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet)<-[:POSTED]-(u:User)-

[:FROM]->(c:State) match (t:Tweet)<-[:TAGGED]-(h:Hashtag) where y.year=2016 and m.month=1 and d.day>=1 and d.day<=31 

and c.name in ['Ohio', 'Alaska', 'Alabama'] return collect(distinct(h.name)) as hashtag_list,c.name as state limit 1000; 

11: Match (y:Year)-[:HAS_MONTH]->(m:Month)-[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet)<-[:POSTED]-(u:User)-

[:FROM]->(c:State) match (t:Tweet)<-[:TAGGED]-(h:Hashtag) where u.sub_category in ['GOP', 'democrat'] and y.year=2016 

and m.month=1 and d.day>=1 and d.day<=31 and t.day>=1 and t.day<=31 and t.month=1 and t.year=2016 and c.name='Ohio' 

return distinct(t.text) as tweet, t.year as year, t.month as month, t.day as day, h.name as hashtag, u.screen_name as user, 

u.sub_category as user_party order by year, month, day desc limit 1000; 

12: Match (y:Year)-[:HAS_MONTH]->(m:Month)-[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet)<-[:POSTED]-(u:User)-

[:FROM]->(c:State) match (h:Hashtag)-[:TAGGED]->(t:Tweet) where y.year=2016 and m.month=1 and d.day>=1 and d.day<=31 

and c.name='Ohio' return h,t,u,c,d,m,y limit 1000; 

13: MATCH commonPath=(c)-[:HAS_YEAR]->(y:Year{year:2016})-[:HAS_MONTH]-

>(commonEnd:Month{month:1}),startPath=(commonEnd)-[:HAS_DAY]->(d1:Day{day:1}),  endPath=(commonEnd)-

[:HAS_DAY]->(d2:Day{day:31}), valuePath=(d1:Day)-[:NEXT*0..]->(middle)-[:NEXT*0..]->(d2:Day),vals=(middle)-

[:HAS_TWEET]->(t:Tweet)<-[:TAGGED]-(h:Hashtag{name:'GOPDebate'}) RETURN vals limit 100; 

14: Match (h:Hashtag{name: 'GOPDebate'})-[:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) where 

u.sub_category in ['GOP', 'democrat'] and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31  return  t.day as day, 

u.screen_name as  user_screenname,u.sub_category as user_party,c.name as state order by t.created_at asc limit 1000; 
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15: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)-[:URL_USED]->(url:Url) where u.sub_category = 'GOP' and 

t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return t.day as day, u.screen_name as user_screenname,c.name as 

reporter_of_state, collect(url.url) as urls order by t.day limit 100; 

16: MATCH (u:User)-[:POSTED]->(t:Tweet)-[:URL_USED]->(ul:Url) where u.sub_category in ['GOP', 'democrat'] and 

t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return t.retweet_count AS retweet_count,t.text as tweet,u.screen_name as 

user_screenname,u.sub_category as user_party, ul.url as url order by t.retweet_count desc limit 100; 

17: MATCH (u:User)-[:POSTED]->(t:Tweet)-[:URL_USED]->(ul:Url) where u.sub_category='GOP' and t.year=2016 and 

t.month=1 and t.day>=1 and t.day<=31 return u.screen_name as user_screenname,u.sub_category as user_party, 

collect(distinct(ul.url)) as url limit 100; 

18: MATCH (c:State)<-[:FROM]-(u)-[:POSTED]->(t:Tweet)-[:MENTIONED]->(m:User) where  u.sub_category = 'GOP' and 

t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return t.day as day, t.text as tweet,u.screen_name as user_screenname, 

c.name as from, collect(m.screen_name) as mentioned_user  order by day asc limit 1000; 

19: MATCH (u:User)-[:POSTED]->(t:Tweet)-[:MENTIONED]->(m:User) where  u.sub_category = 'GOP' and t.year=2016 and 

t.month=1 and t.day>=1 and t.day<=31 return u.screen_name as user_screenname, collect(m.screen_name) as mentioned_user  

limit 1000; 

20: Match (y:Year)-[:HAS_MONTH]->(m:Month)-[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet) match (h:Hashtag)-

[:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) where y.year=2016 and m.month=1 and d.day>=1 and 

d.day<=31 and c.name='New Jersey' return h,d,m,y limit 1000; 

21: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User) WHERE u.sub_category = 'GOP' and t.year=2016 

and t.month=1 and t.day>=1 and t.day<=31 RETURN tag.name as hashtag, COUNT(r) as appeared ORDER BY appeared DESC 

LIMIT 1000; 

22: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) WHERE t.year=2016 and 

t.month=1 and t.day>=1 and t.day<=31 RETURN COUNT(r) as number_of_tweets_appeared, tag.name as hashtag, 

collect(distinct(c.name)) as state ORDER BY number_of_tweets_appeared DESC LIMIT 1000; 

23: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User) WHERE u.sub_category in ['GOP', 'democrat'] and 

t.year=2016 and t.month in [1,2] and t.day>=1 and t.day<=8 RETURN tag.name as tags, COUNT(r) as appeared ORDER BY 

appeared DESC LIMIT 1000; 

24: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User) WHERE u.sub_category in ['GOP', 'democrat'] and 

t.day>=1 and t.day<=31 and t.month=1 and t.year=2016 RETURN tag.name as hashtag, COUNT(r) as appeared ORDER BY 

appeared DESC LIMIT 1000; 

25: MATCH (u:User)-[:POSTED]->(t:Tweet)-[:MENTIONED]->(m:User) where  m.sub_category in  ['GOP', 'democrat'] and 

u.sub_category = 'GOP' and t.year=2016 and t.month in [1, 2] and t.day>=1 and t.day<=31 return  t.month as month, t.day as day, 

t.text as tweet,u.screen_name as user_screenname, m.screen_name as mentioned_user  order by month,day asc limit 10000; 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

40 

Cypher Queries for Model 2 

1: MATCH (cat:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User)-[:POSTED]->(t:Tweet)-[:RETWEET_COUNT]-

>(retweet_count:RetweetCount) using index cat:SubCategory(sub_category) where retweet_count.retweet_count>0  and  

cat.sub_category in ['GOP', 'democrat'] and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return 

retweet_count.retweet_count AS retweet_count,t.text as tweet,u.screen_name as user_screenname,cat.sub_category as user_party 

order by retweet_count.retweet_count  desc limit 100; 

2: MATCH (sc:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User)-[:POSTED]->(t:Tweet)-[:RETWEET_COUNT]-

>(rc:RetweetCount) match (t:Tweet)<-[:TAGGED]-(h:Hashtag)  where h.name = 'GOPDebate' and sc.sub_category in ['GOP', 

'democrat'] and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return distinct(u.screen_name) as user_screenname, 

sc.sub_category as user_party, rc.retweet_count as retweet_count, t.text as tweet order by retweet_count desc limit 100; 

3: MATCH (h:Hashtag)-[:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) return (count(distinct(c.name))) AS 

Longest_Path,collect(distinct(c.name)) as States, h.name AS Hashtag order by Longest_Path desc limit 100; 

4: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)<-[:TAGGED]-(n:Hashtag) match (t:Tweet)<-[:HAS_TWEET]-

(d:Day)<-[:HAS_DAY]-(m:Month)<-[:HAS_MONTH]-(y:Year{year: 2016}) where n.name='GOPDebate'  RETURN 

distinct(c.name) as states,m.month as month,d.day as day", 

5: match (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)-[:RETWEET_COUNT]->(rc:RetweetCount) match (t:Tweet)<-

[:TAGGED]-(h:Hashtag)  where t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 and c.name = 'New Jersey' and h.name 

= 'GOPDebate'   return t.text AS Tweet,rc.retweet_count AS retweet_count order by retweet_count desc; 

6: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)<-[:TAGGED]-(h:Hashtag) where h.name in ['GOPDebate', 

'DemDebate', 'GOP'] return distinct(u.screen_name) AS user_screenname, c.name AS location order by user_screenname limit 

100; 

7: match (cat:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User) MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]-

>(t:Tweet)<-[:TAGGED]-(h:Hashtag)  using index h:Hashtag(name) WHERE h.name = 'GOPDebate'  and c.name='New Jersey' 

and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return count(t) AS count,u.screen_name as user_screenname, 

cat.sub_category as user_party order by count desc; 

8: MATCH (c:State)<-[:FROM]-(u:User {name: 'SusanKLivio'})-[:POSTED]->(t:Tweet)<-[:TAGGED]-(h:Hashtag) WHERE 

h.name = 'GOPDebate'  and c.name='New Jersey' and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return t.text as 

tweet,u.screen_name as user_screenname  Limit 1000; 

9: MATCH (cat:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User) using index cat:SubCategory(sub_category) where 

cat.sub_category in ['GOP', 'democrat'] return u.screen_name as user_screenname, cat.sub_category as user_party, u.followers as 

followers_count order by followers_count desc limit 1000; 

10: match (y:Year)-[:HAS_MONTH]->(m:Month)-[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet)<-[:POSTED]-(u:User)-

[:FROM]->(c:State) match (t:Tweet)<-[:TAGGED]-(h:Hashtag) where y.year=2016 and m.month=1 and d.day>=1 and d.day<=31 

and c.name in ['Ohio', 'Alaska', 'Alabama'] return collect(distinct(h.name)) as hashtag_list,c.name as state limit 1000; 

11: MATCH (cat:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User) match (y:Year)-[:HAS_MONTH]->(m:Month)-

[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) match (h:Hashtag)-

[:TAGGED]->(t:Tweet) where cat.sub_category in ['GOP', 'democrat'] and y.year=2016 and m.month=1 and d.day>=1 and 

d.day<=31 and t.day>=1 and t.day<=31 and t.month=1 and t.year=2016 and c.name='Ohio' return distinct(t.text) as tweet, t.year 

as year, t.month as month, t.day as day, h.name as hashtag, u.screen_name as user_screenname, cat.sub_category as user_party 

order by year, month, day desc limit 1000; 

12: match (y:Year)-[:HAS_MONTH]->(m:Month)-[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet)<-[:POSTED]-(u:User)-

[:FROM]->(c:State) match (h:Hashtag)-[:TAGGED]->(t:Tweet) where y.year=2016 and m.month=1 and d.day>=1 and d.day<=31 

and c.name='Ohio' return h,t,u,c,d,m,y limit 1000; 

13: MATCH commonPath=(c)-[:HAS_YEAR]->(y:Year{year:2016})-[:HAS_MONTH]-

>(commonEnd:Month{month:1}),startPath=(commonEnd)-[:HAS_DAY]->(d1:Day{day:1}), endPath=(commonEnd)-

[:HAS_DAY]->(d2:Day{day:31}),valuePath=(d1:Day)-[:NEXT*0..]->(middle)-[:NEXT*0..]->(d2:Day),vals=(middle)-
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[:HAS_TWEET]->(t:Tweet)<-[:TAGGED]-(h:Hashtag{name:'GOPDebate'}) RETURN vals limit 100; 

14: MATCH (cat:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User) match (h:Hashtag{name: 'GOPDebate'})-[:TAGGED]-

>(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) using index h:Hashtag(name) where cat.sub_category in ['GOP', 

'democrat'] and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31  return  t.day as day, u.screen_name as  

user_screenname,cat.sub_category as user_party,c.name as State order by t.created_at asc limit 1000; 

15: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)-[:URL_USED]->(url:Url) MATCH (cat:SubCategory)<-

[:FROM_SUBCATEGORY]-(u:User) using index cat:SubCategory(sub_category) where cat.sub_category='GOP' and  

t.year=2016 and t.month=3 and t.day>=1 and t.day<=31 return t.day as day, u.screen_name as user_screenname,c.name as 

reporter_of_state, collect(url.url) as urls order by t.day limit 100; 

16: match (t:Tweet)-[:RETWEET_COUNT]->(retweet_count:RetweetCount) MATCH (cat:SubCategory)<-

[:FROM_SUBCATEGORY]-(u:User)-[:POSTED]->(t:Tweet)-[:URL_USED]->(ul:Url) using index 

cat:SubCategory(sub_category) where ul.url <> '' and cat.sub_category in ['GOP', 'democrat'] and t.year=2016 and t.month=1 

and t.day>=1 and t.day<=31 return retweet_count.retweet_count AS retweet_count,t.text as tweet,u.screen_name as 

user_screenname,cat.sub_category as user_party, ul.url as url order by retweet_count.retweet_count desc limit 100; 

17: MATCH (cat:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User)-[:POSTED]->(t:Tweet)-[:URL_USED]->(ul:Url)  where 

cat.sub_category='GOP' and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return u.screen_name as 

user_screenname,cat.sub_category as user_party, collect(distinct(ul.url)) as url limit 100; 

18: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)-[:MENTIONED]->(m:User) MATCH (cat:SubCategory)<-

[:FROM_SUBCATEGORY]-(u:User) using index cat:SubCategory(sub_category) where m.screen_name <> '' and  

cat.sub_category = 'GOP' and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return t.day as day, t.text as 

tweet,u.screen_name as user_screenname, c.name as from, collect(m.screen_name) as mentioned_user order by day asc limit 1000; 

19: MATCH (cat:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User)-[:POSTED]->(t:Tweet)-[:MENTIONED]->(m:User) 

where cat.sub_category = 'GOP' and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return u.screen_name as 

user_screenname, collect(m.screen_name) as mentioned_user  limit 1000; 

20: match (y:Year)-[:HAS_MONTH]->(m:Month)-[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet) match (h:Hashtag)-

[:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) where y.year=2016 and m.month=1 and d.day>=1 and 

d.day<=31 and c.name='New Jersey' return h,d,m,y limit 1000; 

21: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User) MATCH (cat:SubCategory)<-

[:FROM_SUBCATEGORY]-(u:User) using index cat:SubCategory(sub_category) WHERE cat.sub_category = 'GOP' and 

t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 RETURN tag.name as Hashtag, COUNT(r) as appeared ORDER BY 

appeared DESC LIMIT 1000; 

22: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) WHERE t.year=2016 and 

t.month=1 and t.day>=1 and t.day<=31 RETURN COUNT(r) as number_of_tweets_appeared, tag.name as hashtag, 

collect(distinct(c.name)) as state ORDER BY number_of_tweets_appeared DESC LIMIT 1000; 

23: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User) MATCH (cat:SubCategory)<-

[:FROM_SUBCATEGORY]-(u:User) using index cat:SubCategory(sub_category) WHERE cat.sub_category in ['GOP', 

'democrat'] and t.year=2016 and t.month in [1,2] and t.day>=1 and t.day<=8 RETURN tag.name as tags, COUNT(r) as appeared 

ORDER BY appeared DESC LIMIT 1000; 

24: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User) MATCH (cat:SubCategory)<-

[:FROM_SUBCATEGORY]-(u:User) using index cat:SubCategory(sub_category) WHERE cat.sub_category in ['GOP', 

'democrat'] and t.day>=1 and t.day<=31 and t.month=1 and t.year=2016 RETURN tag.name as Hashtag, COUNT(r) as appeared 

ORDER BY appeared DESC LIMIT 1000; 

25: MATCH (u:User)-[:POSTED]->(t:Tweet)-[:MENTIONED]->(m:User) MATCH (mcat:SubCategory)<-

[:FROM_SUBCATEGORY]-(m:User) MATCH (cat:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User) using index 

cat:SubCategory(sub_category) where mcat.sub_category in ['GOP', 'democrat'] and cat.sub_category = 'GOP' and t.year=2016 

and t.month in [1, 2] and t.day>=1 and t.day<=31 return t.month as month, t.day as day, t.text as Tweet,u.screen_name as 

user_screenname, m.screen_name as mentioned_user order by month,day asc limit 10000; 
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Cypher Queries for Model 3 

1: MATCH (u:User)-[:POSTED]->(t:Tweet) where t.retweet_count>0  and  u.sub_category in ['GOP', 'democrat'] and t.year=2016 

and t.month=1 and t.day>=1 and t.day<=31 return t.retweet_count AS retweet_count,t.text as tweet,u.screen_name as 

user_screenname,u.sub_category as user_party order by t.retweet_count  desc limit 100; 

2: MATCH (u:User)-[:POSTED]->(t:Tweet)<-[:TAGGED]-(h:Hashtag)  where h.name = 'GOPDebate' and u.sub_category in 

['GOP', 'democrat'] and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return distinct(u.screen_name) as 

user_screenname, u.sub_category as user_party, t.retweet_count as retweet_count, t.text as tweet order by retweet_count desc 

limit 100; 

3: MATCH (c:State)-[:APPEARED]->(h:Hashtag) return (count(distinct(c.name))) AS Longest_Path,collect(distinct(c.name)) as 

States, h.name AS Hashtag order by Longest_Path desc limit 100; 

4: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)<-[:TAGGED]-(n:Hashtag) match (t:Tweet)<-[:HAS_TWEET]-

(d:Day)<-[:HAS_DAY]-(m:Month)<-[:HAS_MONTH]-(y:Year{year: 2016}) where n.name='GOPDebate'  RETURN 

distinct(c.name) as states,m.month as month,d.day as day", 

5: match (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)<-[:TAGGED]-(h:Hashtag) where t.year=2016 and t.month=1 and 

t.day>=1 and t.day<=31 and c.name = 'New Jersey' and h.name = 'GOPDebate'   return t.text AS tweet,t.retweet_count AS 

retweet_count order by t.retweet_count desc; 

6: MATCH (c:State)<-[:FROM]-(u:User)-[:USED]->(h:Hashtag) where h.name in ['GOPDebate', 'DemDebate', 'GOP'] return 

distinct(u.screen_name) AS user_screenname, c.name AS location order by user_screenname limit 100; 

7: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)<-[:TAGGED]-(h:Hashtag) WHERE h.name = 'GOPDebate'  

and c.name='New Jersey' and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return count(t) AS count,u.screen_name as 

user_screenname, u.sub_category as type order by count desc; 

8: MATCH (c:State)<-[:FROM]-(u:User {name: 'SusanKLivio'})-[:POSTED]->(t:Tweet)<-[:TAGGED]-(h:Hashtag) WHERE 

h.name = 'GOPDebate'  and c.name='New Jersey' and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return t.text as 

tweet,u.screen_name as user_screenname  Limit 1000; 

9: MATCH (u:User)  where u.sub_category in ['GOP', 'democrat'] return u.screen_name as user_screenname, u.sub_category as 

user_party, u.followers as followers_count order by followers_count desc limit 1000; 

10: match (y:Year)-[:HAS_MONTH]->(m:Month)-[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet)<-[:POSTED]-(u:User)-

[:FROM]->(c:State) match (t:Tweet)<-[:TAGGED]-(h:Hashtag) where y.year=2016 and m.month=1 and d.day>=1 and d.day<=31 

and c.name in ['Ohio', 'Alaska', 'Alabama'] return collect(distinct(h.name)) as hashtag_list,c.name as state limit 1000; 

11: match (y:Year)-[:HAS_MONTH]->(m:Month)-[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet)<-[:POSTED]-(u:User)-

[:FROM]->(c:State) match (t:Tweet)<-[:TAGGED]-(h:Hashtag) where u.sub_category in ['GOP', 'democrat'] and y.year=2016 

and m.month=1 and d.day>=1 and d.day<=31 and t.day>=1 and t.day<=31 and t.month=1 and t.year=2016 and c.name='Ohio' 

return distinct(t.text) as tweet, t.year as year, t.month as month, t.day as day, h.name as hashtag, u.screen_name as 

user_screenname, u.sub_category as type order by year, month, day desc limit 1000; 

12: match (y:Year)-[:HAS_MONTH]->(m:Month)-[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet)<-[:POSTED]-(u:User)-

[:FROM]->(c:State) match (h:Hashtag)-[:TAGGED]->(t:Tweet) where y.year=2016 and m.month=1 and d.day>=1 and d.day<=31 

and c.name='Ohio' return h,t,u,c,d,m,y limit 1000; 

13: MATCH commonPath=(c)-[:HAS_YEAR]->(y:Year{year:2016})-[:HAS_MONTH]-

>(commonEnd:Month{month:1}),startPath=(commonEnd)-[:HAS_DAY]->(d1:Day{day:1}), endPath=(commonEnd)-

[:HAS_DAY]->(d2:Day{day:31}),valuePath=(d1:Day)-[:NEXT*0..]->(middle)-[:NEXT*0..]->(d2:Day),vals=(middle)-

[:HAS_TWEET]->(t:Tweet)<-[:TAGGED]-(h:Hashtag{name:'GOPDebate'}) RETURN vals limit 100; 

14: match (h:Hashtag{name: 'GOPDebate'})-[:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) where 

t.year=2016 and t.month=1 and t.day>=1 and t.day<=31  return  t.day as day, u.screen_name as user_screenname,u.sub_category 

as user_party,c.name as State order by t.created_at asc limit 1000; 

15: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)-[:URL_USED]->(url:Url) where u.sub_category = 'GOP' and 

t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return t.day as day, u.screen_name as user_screenname,c.name as 
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reporter_of_state, collect(url.url) as urls order by t.day limit 100; 

16: MATCH (u:User)-[:POSTED]->(t:Tweet)-[:URL_USED]->(ul:Url) where u.sub_category in ['GOP', 'democrat'] and 

t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return t.retweet_count AS retweet_count,t.text as tweet,u.screen_name as 

user_screenname,u.sub_category as user_party, ul.url as url  order by t.retweet_count  desc limit 100; 

17: MATCH (u:User)-[:POSTED]->(t:Tweet)-[:URL_USED]->(ul:Url) where u.sub_category='GOP' and t.year=2016 and 

t.month=1 and t.day>=1 and t.day<=31 return u.screen_name as user_screenname,u.sub_category as user_party, 

collect(distinct(ul.url)) as url limit 100; 

18: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)-[:MENTIONED]->(m:User) where  u.sub_category = 'GOP' 

and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return t.day as day, t.text as tweet,u.screen_name as user_screenname, 

c.name as from, collect(m.screen_name) as mentioned_user  order by day asc limit 1000; 

19: MATCH (u:User)-[:POSTED]->(t:Tweet)-[:MENTIONED]->(m:User) where  u.sub_category = 'GOP' and t.year=2016 and 

t.month=1 and t.day>=1 and t.day<=31 return u.screen_name as user_screenname, collect(m.screen_name) as mentioned_user  

limit 1000; 

20: match (y:Year)-[:HAS_MONTH]->(m:Month)-[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet) match (h:Hashtag)-

[:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) where y.year=2016 and m.month=1 and d.day>=1 and 

d.day<=31 and c.name='New Jersey' return h,d,m,y limit 1000; 

21: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User) WHERE u.sub_category = 'GOP' and t.year=2016 

and t.month=1 and t.day>=1 and t.day<=31 RETURN tag.name as Hashtag, COUNT(r) as appeared ORDER BY appeared DESC 

LIMIT 1000; 

22: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) WHERE t.year=2016 and 

t.month=1 and t.day>=1 and t.day<=31 RETURN COUNT(r) as number_of_tweets_appeared, tag.name as hashtag, 

collect(distinct(c.name)) as state ORDER BY number_of_tweets_appeared DESC LIMIT 1000; 

23: MATCH (u:User)-[:POSTED]->(t:Tweet)<-[r:TAGGED]-(tag:Hashtag) WHERE u.sub_category in ['GOP', 'democrat'] and 

t.year=2016 and t.month in [1,2] and t.day>=1 and t.day<=8 RETURN tag.name as Hashtag, COUNT(r) as appeared ORDER BY 

appeared DESC LIMIT 1000; 

24: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User) WHERE u.sub_category in ['GOP', 'democrat'] and 

t.day>=1 and t.day<=31 and t.month=1 and t.year=2016 RETURN tag.name as Hashtag, COUNT(r) as appeared ORDER BY 

appeared DESC LIMIT 1000; 

25: MATCH (u:User)-[:POSTED]->(t:Tweet)-[:MENTIONED]->(m:User) where  m.sub_category in  ['GOP', 'democrat'] and 

u.sub_category = 'GOP' and t.year=2016 and t.month in [1, 2] and t.day>=1 and t.day<=31 return t.month as month, t.day as day, 

t.text as Tweet,u.screen_name as user_screenname, m.screen_name as mentioned_user  order by month,day asc limit 10000; 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 

 

44 

Cypher Queries for Model 4 

1: MATCH (sub:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User)-[:POSTED]->(t:Tweet) using index 

sub:SubCategory(sub_category) where t.retweet_count>0  and  sub.sub_category in ['GOP', 'democrat'] and t.year=2016 and 

t.month=1 and t.day>=1 and t.day<=31 return t.retweet_count AS retweet_count,t.text as tweet,u.screen_name as 

user_screenname,sub.sub_category as user_party order by t.retweet_count  desc limit 100; 

2: MATCH (sub:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User)-[:POSTED]->(t:Tweet)<-[:TAGGED]-(h:Hashtag)  where 

h.name = 'GOPDebate' and sub.sub_category in ['GOP', 'democrat'] and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 

return distinct(u.screen_name) as user_screenname, sub.sub_category as user_party, t.retweet_count as retweet_count, t.text as 

tweet order by retweet_count desc limit 100; 

3: MATCH (c:State)-[:APPEARED]->(h:Hashtag) return (count(distinct(c.name))) AS longest_path,collect(distinct(c.name)) as 

states, h.name AS hashtag order by longest_path desc limit 100; 

4: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)<-[:TAGGED]-(n:Hashtag) match (t:Tweet)<-[:HAS_TWEET]-

(d:Day)<-[:HAS_DAY]-(m:Month)<-[:HAS_MONTH]-(y:Year{year: 2016}) where n.name='GOPDebate'  RETURN 

distinct(c.name) as states,m.month as month,d.day as day; 

5: match (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)<-[:TAGGED]-(h:Hashtag) where t.year=2016 and t.month=1 and 

t.day>=1 and t.day<=31 and c.name = 'New Jersey' and h.name = 'GOPDebate' return t.text AS tweet,t.retweet_count AS 

retweet_count order by retweet_count desc; 

6: MATCH (c:State)<-[:FROM]-(u:User)-[:USED]->(h:Hashtag) where h.name in ['GOPDebate', 'DemDebate', 'GOP'] return 

distinct(u.screen_name) as user_screenname, c.name AS location order by user_screenname limit 100; 

7: match (sub:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User) MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]-

>(t:Tweet)<-[:TAGGED]-(h:Hashtag) using index h:Hashtag(name) WHERE h.name = 'GOPDebate' and c.name='New Jersey' 

and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return count(t) AS tweet_count,u.screen_name as user_screenname, 

sub.sub_category as user_party order by tweet_count desc; 

8: MATCH (c:State)<-[:FROM]-(u:User {name: 'SusanKLivio'})-[:POSTED]->(t:Tweet)<-[:TAGGED]-(h:Hashtag) WHERE 

h.name = 'GOPDebate'  and c.name='New Jersey' and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return t.text as 

tweet,u.screen_name as user_screenname  Limit 1000; 

9: MATCH (sub:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User) using index sub:SubCategory(sub_category) where 

sub.sub_category in ['GOP', 'democrat'] return u.screen_name as user_screenname, sub.sub_category as user_party, u.followers 

as followers_count order by followers_count desc limit 1000; 

10: match (y:Year)-[:HAS_MONTH]->(m:Month)-[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet)<-[:POSTED]-(u:User)-

[:FROM]->(c:State) match (t:Tweet)<-[:TAGGED]-(h:Hashtag) where y.year=2016 and m.month=1 and d.day>=1 and d.day<=31 

and c.name in ['Ohio', 'Alaska', 'Alabama'] return collect(distinct(h.name)) as hashtag_list,c.name as state limit 100; 

11: MATCH (sub:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User) match (y:Year)-[:HAS_MONTH]->(m:Month)-

[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) match (h:Hashtag)-

[:TAGGED]->(t:Tweet) where sub.sub_category in ['GOP', 'democrat'] and y.year=2016 and m.month=1 and d.day>=1 and 

d.day<=31 and t.day>=1 and t.day<=31 and t.month=1 and t.year=2016 and c.name='Ohio' return distinct(t.text) as tweet, t.year 

as year, t.month as month, t.day as day, h.name as hashtag, u.screen_name as user_screenname, sub.sub_category as user_party 

order by year, month, day desc limit 1000; 

12: match (y:Year)-[:HAS_MONTH]->(m:Month)-[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet)<-[:POSTED]-(u:User)-

[:FROM]->(c:State) match (h:Hashtag)-[:TAGGED]->(t:Tweet) where y.year=2016 and m.month=1 and d.day>=1 and d.day<=31 

and c.name='Ohio' return h,t,u,c,d,m,y limit 1000; 

13: MATCH commonPath=(c)-[:HAS_YEAR]->(y:Year{year:2016})-[:HAS_MONTH]-

>(commonEnd:Month{month:1}),startPath=(commonEnd)-[:HAS_DAY]->(d1:Day{day:1}), endPath=(commonEnd)-

[:HAS_DAY]->(d2:Day{day:31}),valuePath=(d1:Day)-[:NEXT*0..]->(middle)-[:NEXT*0..]->(d2:Day),vals=(middle)-

[:HAS_TWEET]->(t:Tweet)<-[:TAGGED]-(h:Hashtag{name:'GOPDebate'}) RETURN vals limit 100; 

14: MATCH (sub:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User) match (h:Hashtag{name: 'GOPDebate'})-[:TAGGED]-
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>(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) using index h:Hashtag(name) where sub.sub_category in ['GOP', 

'democrat'] and t.year=2016 and t.month=1 and t.day>=1 and t.day<=30 return t.day as day, u.screen_name as 

user_screenname,sub.sub_category as user_party,c.name as state order by t.created_at asc limit 1000; 

15: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)-[:URL_USED]->(url:Url) MATCH (sub:SubCategory)<-

[:FROM_SUBCATEGORY]-(u:User) using index sub:SubCategory(sub_category) where sub.sub_category='GOP' and 

t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return t.day as day, u.screen_name as user_screenname,c.name as 

reporter_of_state, collect(url.url) as urls order by t.day limit 100; 

 16: MATCH (sub:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User)-[:POSTED]->(t:Tweet)-[:URL_USED]->(ul:Url) using 

index sub:SubCategory(sub_category) where sub.sub_category in ['GOP', 'democrat'] and t.year=2016 and t.month=1 and 

t.day>=1 and t.day<=31 return t.retweet_count AS retweet_count,t.text as tweet,u.screen_name as 

user_screenname,sub.sub_category as user_party, ul.url as url order by t.retweet_count desc limit 100; 

 17: MATCH (sub:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User)-[:POSTED]->(t:Tweet)-[:URL_USED]->(ul:Url)  where 

sub.sub_category='GOP' and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return u.screen_name as 

user_screenname,sub.sub_category as user_party, collect(distinct(ul.url)) as url limit 100; 

18: MATCH (c:State)<-[:FROM]-(u:User)-[:POSTED]->(t:Tweet)-[:MENTIONED]->(m:User) MATCH (sub:SubCategory)<-

[:FROM_SUBCATEGORY]-(u:User) using index sub:SubCategory(sub_category) where  sub.sub_category = 'GOP' and 

t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return t.day as day, t.text as tweet,u.screen_name as user_screenname, 

c.name as from, collect(m.screen_name) as mentioned_user order by day asc limit 1000; 

19: MATCH (sub:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User)-[:POSTED]->(t:Tweet)-[:MENTIONED]->(m:User) 

where  sub.sub_category = 'GOP' and t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 return u.screen_name as 

user_screenname, collect(m.screen_name) as mentioned_user  limit 1000; 

20: match (y:Year)-[:HAS_MONTH]->(m:Month)-[:HAS_DAY]->(d:Day)-[:HAS_TWEET]->(t:Tweet) match (h:Hashtag)-

[:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) where y.year=2016 and m.month=1 and d.day>=1 and 

d.day<=31 and c.name='New Jersey' return h,d,m,y limit 1000; 

21: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User) MATCH (sub:SubCategory)<-

[:FROM_SUBCATEGORY]-(u:User) using index sub:SubCategory(sub_category) WHERE sub.sub_category = 'GOP' and 

t.year=2016 and t.month=1 and t.day>=1 and t.day<=31 RETURN tag.name as Hashtag, COUNT(r) as 

number_of_tweets_appeared ORDER BY number_of_tweets_appeared DESC LIMIT 1000; 

22: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User)-[:FROM]->(c:State) WHERE t.year=2016 and 

t.month=1 and t.day>=1 and t.day<=31 RETURN COUNT(r) as number_of_tweets_appeared, tag.name as hashtag, 

collect(distinct(c.name)) as state ORDER BY number_of_tweets_appeared DESC LIMIT 1000; 

23: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User) MATCH (sub:SubCategory)<-

[:FROM_SUBCATEGORY]-(u:User) using index sub:SubCategory(sub_category) WHERE sub.sub_category in ['GOP', 

'democrat'] and t.year=2016 and t.month in [1,2] and t.day>=1 and t.day<=8 RETURN tag.name as hashtag, COUNT(r) as 

number_of_tweets_appeared ORDER BY number_of_tweets_appeared DESC LIMIT 1000; 

24: MATCH (tag:Hashtag)-[r:TAGGED]->(t:Tweet)<-[:POSTED]-(u:User) MATCH (sub:SubCategory)<-

[:FROM_SUBCATEGORY]-(u:User) using index sub:SubCategory(sub_category) WHERE sub.sub_category in ['GOP', 

'democrat'] and t.day>=1 and t.day<=31 and t.month=1 and t.year=2016 RETURN tag.name as hashtag, COUNT(r) as 

number_of_tweets_appeared ORDER BY number_of_tweets_appeared DESC LIMIT 1000; 

25: MATCH (u:User)-[:POSTED]->(t:Tweet)-[:MENTIONED]->(m:User) MATCH (msub:SubCategory)<-

[:FROM_SUBCATEGORY]-(m:User) MATCH (sub:SubCategory)<-[:FROM_SUBCATEGORY]-(u:User) using index 

sub:SubCategory(sub_category) where msub.sub_category in ['GOP', 'democrat']  and sub.sub_category = 'GOP' and t.year=2016 

and t.month in [1, 2] and t.day>=1 and t.day<=31 return t.month as month, t.day as day, t.text as tweet,u.screen_name as 

user_screenname, m.screen_name as mentioned_user order by month,day asc limit 10000; 
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APPENDIX B. THE STEPS TO RUN THE PROGRAM ARE AS FOLLOWS 

1. To run the program to fetch tweets: 

1.1. Open terminal and make google_appengine (C:\Program Files 

(x86)\Google\google_appengine) as the working directory and run  the following       

command at the command prompt. 

 python dev_appserver.py <path to project> 

For instance, python dev_appserver.py C:\Users\pku\Downloads\twitter-django-

cy\twitter-django 

1.2. Open browser and enter the url: localhost:8080/fetchtweets to start the cron job to 

fetch tweets. 

1.3. To get the csv file with the tweets collected, enter url: localhost:8080/getcsv in 

another web browser page. 

1.3.1. Enter the file name of the csv file on the pop up dialog box for the file and 

save it. 

2. To open the admin dashboard, enter the url: localhost:8000 in another web browser 

page. 

3. To create a Neo4j graph database: 

3.1.  Copy the csv file and create_model_x_db_from_csv.py into the parent directory of 

Neo4j installation parent directory. 

3.2. Run Neo4j instance by running the bin/Neo4j file. 

3.3. Open create_model_x_db_from_csv.py and enter the name of the csv file under the 

main() function  

3.4. Open terminal and make Neo4j installation directory as the working directory and 

run command: python create_model_x_db_from_csv 

4. To record the query execution time of 25 Cypher queries: 

4.1. Open terminal and make Neo4j installation directory as the working directory and 

run command: python tweets_model_x_read_queries. After successful completion 

of the program a csv file will be generated with the running time of all the 25 

queries. 
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